GCE

Mathematics

Advanced GCE

Unit 4729: Mechanics 2

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

i	$\begin{aligned} & \mathrm{PE}=70 \times 3 \mathrm{~g} \\ & \mathrm{KE} \text { change }=70 \times\left(2.1^{2}-1.4^{2}\right) / 2 \\ & \mathrm{PE} \text { change }+\mathrm{KE} \text { change } \\ & 2143.75 \mathrm{~J} \end{aligned}$	B1 B1 M1 A1 [4]	$\begin{aligned} & 2058 \\ & 85.75 \end{aligned}$ Must include evaluation Accept 2140. Allow all values to be negative.
OR	$\begin{aligned} & 20(90+\mathrm{T})=2143.75 \\ & \mathrm{~T}=17.1875 \mathrm{~N} \\ & \\ & 70 \mathrm{~g} \cdot 0.15-90-\mathrm{T}=70 \cdot(-0.06125) \\ & \mathrm{T}=17.1875 \mathrm{~N} \end{aligned}$	M1 A1ft A1 [3] M1 A1 A1 $[3]$	Work done = Energy change used $\mathrm{ft}(\mathrm{cv}(2143.75))$ accept 17.2 Use of $v^{2}=u^{2}+2$ as to find a AND use of N 2 law(4 terms) accept 17.2

2	21000/25 $\begin{aligned} & 0=21000 / 25-25 \mathrm{k}-1250 \mathrm{~g} \sin 2 \\ & \mathrm{k}=16.5 \end{aligned}$	B1 M1 A1 A1 [4]	$\begin{aligned} & \text { Use of force = power/speed } \\ & 3 \text { terms } \\ & \text { cv(21000/25) } \end{aligned}$
ii	$\begin{array}{\|l} 21000 / \mathrm{v}=16.5 \mathrm{v} \\ \mathrm{v}=35.7 \mathrm{~ms}^{-1} \end{array}$	M1 A1ft A1 [3]	$\mathrm{ft} \mathrm{on} \mathrm{cv}(\mathrm{k})$

3	$\begin{aligned} & -(8 \cos 30 / 3)\left(8^{2} \sin 60 / 2\right) \\ & +(4)\left(8^{2}\right) \\ & =\left(8^{2}+8^{2} \sin 60 / 2\right)\left(x_{G}\right) \\ & x_{G}=2.09 \mathrm{~cm} \end{aligned}$	M1 A1 A1 A1 A1 [5]	Table of moments idea, may include g and/or density. -2.309×27.7
ii	$\begin{aligned} & \tan \theta=(2.09 / 4) \\ & \theta=27.6^{\circ} \end{aligned}$	M1 A1ft [2]	$\mathrm{ft} \mathrm{cv}\left(\mathrm{x}_{\mathrm{G}}\right)$

4 ia b	If reversed $2.9+2=\mathrm{e}(3+1.5)$ e > 1 impossible $\begin{aligned} & 2.9-2=e(3+1.5) \\ & e=0.2 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { M1 } \\ \text { A1 } \\ {[2]} \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	Award B1 if no explicit numerical justification May be seen in ia
ii	$\begin{aligned} & 3 m-0.2 \times 1.5=2 m+0.2 \times 2.9 \\ & m=0.88 \end{aligned}$	M1 A1 A1 [3]	Conservation of momentum Accept with g included consistently Do not award if g used
iii	$\begin{aligned} & 0.68=0.2 v+0.2 \times 2.9 \\ & v=0.5 \\ & e=0.5 / 2.9 \\ & e=0.172 \end{aligned}$	M1 A1 M1 A1 [4]	Impulse $=$ change in momentum Separation speed not 2.9 Allow 5/29

\begin{tabular}{|c|c|c|c|}
\hline $$
5
$$ \& $$
\begin{aligned}
& x=(7 \cos 30) t \\
& y=(7 \sin 30) t-g t^{2} / 2 \\
& y=x \tan 30-g x^{2} /\left(2 x 7^{2} \cos ^{2} 30\right)
\end{aligned}
$$ \& $$
\begin{gathered}
\hline \text { B1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
{[4]} \\
\hline
\end{gathered}
$$ \& Attempt to eliminate t
$$
y=x / \sqrt{3}-2 x^{2} / 15 \text { or } y=0.577 x-0.133 x^{2} \text { aef }
$$

\hline ii \& $$
\begin{aligned}
& 2 x^{2} / 15-x / \sqrt{ } 3+0.6=0 \text { or } 9.8 t^{2}-7 t+1.2=0 \\
& x=1.73 \mathrm{~m} \text { or } \sqrt{ } 3 \mathrm{~m} \\
& \quad 2.6(0) \mathrm{m} \text { or } 3 \sqrt{ } 3 / 2 \mathrm{~m}
\end{aligned}
$$ \& $$
\begin{gathered}
\mathrm{M} 1 \\
\mathrm{M} 1 \\
\mathrm{~A} 1 \\
\mathrm{~A} 1 \\
{[4]}
\end{gathered}
$$ \& Create a 3 term Q.E. in x or t with $\mathrm{y}=0.6$ Solve 3 term Q.E. for x or t

\hline iii

OR \& \begin{tabular}{l}
$$
\begin{aligned}
& \mathrm{v}^{2}=(7 \sin 30)^{2}-2 \times 9.8 \times 0.6 \\
& \mathrm{v}=0.7 \mathrm{~ms}^{-1} \\
& \tan \theta=0.7 /(7 \cos 30)
\end{aligned}
$$

$\theta=6.59^{\circ}$ to horizontal or 83.4° to vertical

Attempt to differentiate equation of trajectory $\tan 30-\mathrm{gx} /\left(7^{2} \cos ^{2} 30\right)$

Substitute $x=\sqrt{ } 3$ and equate to $\tan \theta$ $\theta=6.59^{\circ}$ to horizontal or 83.4° to vertical

 \&

M1

A1

M1

A1

[4]

M1

A1

M1

A1 [4]

 \&

Using $\mathrm{v}^{2}=\mathrm{u}^{2}-2 \mathrm{gs}$ with u a component of 7 ; can find t first from their x in (i), and then use $\mathrm{v}=\mathrm{u}+\mathrm{at}$. Use component of 7

Allow $1 / \sqrt{ } 3-4 x / 15$ or $y^{\prime}=0.577-0.267 x$
\end{tabular}

\hline
\end{tabular}

$\begin{array}{\|l\|} \hline 6 \\ i \end{array}$	$\begin{aligned} & R \sin 30=0.3 \mathrm{~g} \\ & \text { Rcos } 30=0.3 \omega^{2} \times 0.12 \\ & \omega=11.9 \mathrm{rads}^{-1} \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$ $[5]$	$\begin{aligned} & \mathrm{R}=5.88 \text { or } 0.6 \mathrm{~g} \\ & \text { accept } \mathrm{v}^{2} / 0.12 \text { for acceleration } \\ & \text { cao } \end{aligned}$
ii	$\begin{aligned} & S+R \cos 30=0.3 \times 2.1^{2} / 0.2 \\ & R=5.88 \\ & S=1.52 \mathrm{~N} \end{aligned}$	M1 A1 B1ft A1 [4]	Resolve and use N2L on sphere $Q, 3$ terms needed $\mathrm{ft} \mathrm{cv}(\mathrm{R})$ from (i)
iii	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=11.9 \times 0.12 \text { or } \mathrm{h}=0.2 / \tan 30 \text { or } 0.12 / \tan 30 \text { or } 0.08 / \tan 30 \\ & +/-(\mathrm{Q}-\mathrm{P})= \\ & 0.5 \times 0.3\left(2.1^{2}-(11.9 \times 0.12)^{2}\right) \\ & \quad+(0.2 / \tan 30-0.12 / \tan 30) \times 0.3 \mathrm{~g} \\ & \mathrm{Q}-\mathrm{P}=+-0.763 \mathrm{~J} \end{aligned}$	B1 M1 A2ft A1 [5]	$\operatorname{cv}(\omega)$ from (i) Attempt to calculate KE or PE for both particles KE difference (ft on $\operatorname{cv}(\omega)$) or PE difference $\mathrm{Q}-\mathrm{P}=+/-(0.3556+0.4074)$

7	$\begin{aligned} & F \times 0.8= \\ & 0.6 \cos 60 \times 550 \\ & F=206.25 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { A1 } \\ \hline[4] \\ \hline \end{array}$	Attempt at moments Accept 206, cao
ii	$\begin{aligned} & \mathrm{T} \times 2 \times 0.8 / \tan 30 \\ & = \\ & 550 \times(0.8 / \sin 30-0.6 \cos 60) \\ & \mathrm{T}=258 \\ & \mathrm{R}=550-\mathrm{T} \cos 30 \\ & \mathrm{Fr}=\mathrm{Tsin} 30 \\ & \mu=129 / 326.6 \\ & \mu=0.395 \end{aligned}$	M1* A1 M1* A1 A1 M1* A1 B1* M1dep* A1 [10]	Moment of T about P Tx 2.77 Moment of weight about P $550 \times(1.6-0.3)$ Accept to 2sf Resolving vertically, 3 terms needed Value for T not required Value for T not required; accept < or \leq For correct use of $F=\mu R, R \neq 550$

OR		M1*	Moments about V, 3 terms needed
	$\mathrm{T} \times 0.8 / \tan 30+550 \times 0.6 \cos 60=\mathrm{R} \times 0.8 / \cos 60$	A2	A1 for two terms correct
		M1*	Resolving vertically, 3 terms needed
	$\mathrm{R}=550-\mathrm{Tcos} 30$	A1	
	Solve for T or R	M1	
	$\mathrm{T}=258$ or $\mathrm{R}=326.5625$	A1	Accept to 2sf
	$\mathrm{Fr}=\mathrm{T} \sin 30$	B1*	Value for T not required; accept < or \leq
	$\mu=129 / 326.6$	M1dep*	For correct use of $F=\mu R, R \neq 550$
	$\mu=0.395$	$\begin{aligned} & \text { A1 } \\ & {[10]} \end{aligned}$	
OR	$\begin{aligned} \operatorname{Fr} \times 1.6 \cos 30+550 \times(1.6 \sin 30+0.6 \sin 30)= \\ R \times(1.6+1.6 \sin 30) \end{aligned}$	M1*	Moments about Q, 3 terms needed
		A2	A1 for two terms correct
		M1*	Resolving vertically, 3 terms needed
	$\mathrm{R}=550-\mathrm{Tcos} 30$	A1	
	$\mathrm{Fr}=\mathrm{T} \sin 30$	B1*	$\text { accept }<\text { or } \leq$
	Solving for at least one of R, Fr, or T Either $\mathrm{R}=326.5625$, or $\mathrm{Fr}=129(.0017008)$, or $\mathrm{T}=258$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Only one needed Accept to 2sf
	$\mu=129 / 326.6$	M1dep*	For correct use of $F=\mu R, R \neq 550$
	$\mu=0.395$	$\begin{aligned} & \text { A1 } \\ & {[10]} \end{aligned}$	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

