

GCE

Mathematics

Advanced GCE

Unit 4729: Mechanics 2

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

1	PE = 70x3g	B1	2058
i	KE change = $70x(2.1^2 - 1.4^2)/2$	B1	85.75
	PE change + KE change	M1	Must include evaluation
	2143.75 J	A1	Accept 2140. Allow all values to be negative.
		[4]	
ii		M1	Work done = Energy change used
	20(90 + T) = 2143.75	A1ft	ft(cv(2143.75))
	T = 17.1875 N	A1	accept 17.2
		[3]	
OR		M1	Use of v ² =u ² + 2as to find a AND use of N2 law(4 terms)
	70g.0.15 - 90 - T = 70.(-0.06125)	A1	
	T = 17.1875 N	A1	accept 17.2
		[3]	

2	21000/25	B1	Use of force = power/speed
i		M1	3 terms
	0 = 21000/25 – 25k – 1250gsin2	A1	cv(21000/25)
	k = 16.5	A1	
		[4]	
ii		M1	
	21000/v= 16.5v	A1ft	ft on cv(k)
	$v = 35.7 \text{ ms}^{-1}$	A1	
		[3]	

3		M1	Table of moments idea, may include g and/or density.
i	- (8cos30/3)(8 ² sin60/2)	A1	-2.309 x 27.7
	$+(4)(8^2)$	A1	
	$=(8^2+8^2\sin 60/2)(x_G)$	A1	
	$x_G = 2.09 \text{ cm}$	A1	
		[5]	
ii	$tan\theta = (2.09/4)$	M1	
	$\theta = 27.6^{\circ}$	A1ft	ft cv(x _G)
		[2]	
		[-]	

4	If reversed $2.9 + 2 = e(3 + 1.5)$	M1	1
4 ia	e > 1 impossible	A1	Award B1 if no explicit numerical justification
la	e > 1 impossible		Award BT if no explicit numerical justification
h	2.9 - 2 = e(3 + 1.5)	[2] M1	May be seen in in
b	e = 0.2		May be seen in ia
	e - 0.2	A1	
		[2] M1	Conservation of momentum
ii	3m - 0.2x1.5 = 2m + 0.2x2.9	A1	
		A1 A1	Accept with g included consistently
	m = 0.88		Do not award if g used
	0.00 0.00 0.00	[3]	
iii	0.68 = 0.2v + 0.2x2.9	M1	Impulse = change in momentum
	v = 0.5	A1	0
	e = 0.5/2.9	M1	Separation speed not 2.9
	e = 0.172	A1	Allow 5/29
		[4]	
	(7 00)(154	
5	$x = (7\cos 30)t$	B1	
İ	$y = (7\sin 30)t - gt^2/2$	B1	
	242 -2 222	M1	Attempt to eliminate t
	$y = x tan 30 - gx^2/(2x7^2 cos^2 30)$	A1	$y = x/\sqrt{3} - 2x^2/15$ or $y = 0.577x - 0.133x^2$ aef
		[4]	
ii		M1	Create a 3 term Q.E. in x or t with y = 0.6
	$2x^2/15 - x/\sqrt{3} + 0.6 = 0$ or $9.8t^2 - 7t + 1.2 = 0$	M1	Solve 3 term Q.E. for x or t
	$x = 1.73 \text{ m or } \sqrt{3} \text{ m}$	A1	
	2.6(0) m or 3√3/2 m	A1	
		[4]	0
iii	$v^2 = (7\sin 30)^2 - 2x9.8x0.6$	M1	Using $v^2 = u^2$ -2gs with u a component of 7; can find t first
	$v = 0.7 \text{ ms}^{-1}$	A1	from their x in (i), and then use $v = u + at$.
	$\tan\theta = 0.7/(7\cos 30)$	M1	Use component of 7
	θ = 6.59° to horizontal or 83.4° to vertical	A1	
		[4]	
OR	Attempt to differentiate equation of trajectory	M1	
	$tan30 - gx/(7^2cos^230)$	A1	
	Substitute $x = \sqrt{3}$ and equate to $tan\theta$	M1	Allow $1/\sqrt{3} - 4x/15$ or y' = 0.577 - 0.267x
	θ = 6.59° to horizontal or 83.4° to vertical	A1 [4]	

6 i	Rsin30 = 0.3g Rcos30 = $0.3\omega^2 \times 0.12$ $\omega = 11.9 \text{ rads}^{-1}$	M1 A1 M1 A1 A1 [5]	R = 5.88 or 0.6g accept $v^2/0.12$ for acceleration cao
ii	S + Rcos30 = 0.3x2.1 ² /0.2 R = 5.88 S = 1.52 N	M1 A1 B1ft A1 [4]	Resolve and use N2L on sphere Q, 3 terms needed ft cv(R) from (i)
iii	v_P = 11.9x0.12, or h = 0.2/tan30 or 0.12/tan30 or 0.08/tan30 +/-(Q - P) = 0.5x0.3(2.1² - (11.9x0.12)²) + (0.2/tan30 - 0.12/tan30) x 0.3g Q-P = +/- 0.763 J	B1 M1 A2ft A1 [5]	$cv(\omega)$ from (i) Attempt to calculate KE or PE for both particles KE difference (ft on $cv(\omega)$) or PE difference Q - P = +/-(0.3556 + 0.4074)

7		M1	Attempt at moments
i	F x 0.8 =	A1	
	0.6cos60 x 550	A1	
	F = 206.25	A1	Accept 206, cao
		[4]	
ii		M1*	Moment of T about P
	T x 2 x 0.8/tan30	A1	T x 2.77
	=	M1*	Moment of weight about P
	550 x (0.8/sin30 – 0.6cos60)	A1	550 x (1.6 – 0.3)
	T = 258	A1	Accept to 2sf
		M1*	Resolving vertically, 3 terms needed
	R = 550 – Tcos30	A1	Value for T not required
	Fr = Tsin30	B1*	Value for T not required; accept < or ≤
	$\mu = 129/326.6$	M1dep*	For correct use of F = μ R, R \neq 550
	$\mu = 0.395$	A1	
		[10]	

OR	T x 0.8/tan30 + 550 x 0.6cos60 = R x 0.8/cos60 R = 550 - Tcos30 Solve for T or R T = 258 or R=326.5625 Fr = Tsin30	M1* A2 M1* A1 M1 A1 B1*	Moments about V, 3 terms needed A1 for two terms correct Resolving vertically, 3 terms needed Accept to 2sf Value for T not required; accept < or ≤
	$\mu = 129/326.6$ $\mu = 0.395$	M1dep* A1 [10]	For correct use of F = μR, R ≠ 550
OR	Fr x 1.6cos30 + 550 x (1.6sin30 +0.6sin30) = R x (1.6 + 1.6sin30)	M1* A2 M1*	Moments about Q, 3 terms needed A1 for two terms correct Resolving vertically, 3 terms needed
	R = 550 – Tcos30 Fr = Tsin30 Solving for at least one of R, Fr, or T	A1 B1* M1	accept < or ≤
	Either R = 326.5625, or Fr = 129(.0017008), or T=258 μ = 129/326.6 μ = 0.395	A1 M1dep* A1 [10]	Only one needed. Accept to 2sf. For correct use of F = μ R, R \neq 550

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

